Sparse and Low-Rank Tensor Recovery via Cubic-Sketching

Botao Hao Department of Statistics Purdue University

2017 International Conference on Data Science Dec. 18, 2017

Joint work with Anru Zhang, and Guang Cheng

Tensor: Multi-dimensional Array

Tensor Data Example

Color image

Advertisement

fMRI

Motivation: Compressed Image Transmission

Motivation: Interaction Effect Model

source: Contraceptive Method Choice dataset from UCI

Motivation: Interaction Effect Model

Sparse and Low-Rank Tensor Recovery

Noisy Cubic Sketching Model

• Observe $\{y_i, \mathcal{X}_i\}$ from noisy cubic sketching model,

$$\underbrace{y_i}_{\text{scalar}} = \underbrace{\langle \mathscr{T}^*, \mathscr{X}_i \rangle}_{\text{tensor inner product}} + \underbrace{\epsilon_i}_{\text{noise}}, \quad i = 1, \dots, n.$$

• Goal: Recover unknown third-order tensor parameter \mathcal{T}^* .

Key Assumptions on Tensor Parameter

- When $\mathcal{T}^* \in \mathbb{R}^{p \times p \times p}$ is a symmetric tensor...
 - CANDECOMP/PARAFAC(CP) low-rank:

- ② Sparse components: $\|\beta_k^*\|_0 \le s$ for $k \in [K]$.
- The cubic sketching tensor \mathscr{X}_i for symmetric case is $\mathscr{X}_i = x_i \circ x_i \circ x_i$, where $\{x_i\}_{i=1}^n$ are Gaussian random vectors.
- β_k^* and $\beta_{k'}^*$ are not orthogonal. Different from eigenvalue decomposition in matrix case.

Key Assumptions on Tensor Parameter

- When $\mathscr{T}^* \in \mathbb{R}^{p_1 \times p_2 \times p_3}$ is a non-symmetric tensor...
 - CANDECOMP/PARAFAC(CP) low-rank:

$$\mathscr{T}^* = \sum_{k=1}^K \eta_k^* \beta_{1k}^* \circ \beta_{2k}^* \circ \beta_{3k}^*, \text{ with } \|\beta_{1k}^*\|_2 = \|\beta_{2k}^*\|_2 = \|\beta_{3k}^*\|_2 = 1$$

- ② Sparse components: $\|\beta_{1k}^*\|_0 \le s_1$, $\|\beta_{2k}^*\|_0 \le s_2$, $\|\beta_{3k}^*\|_0 \le s_3$ for $k \in [K]$.
- The cubic sketching tensor \mathscr{X}_i for non-symmetric case is $\mathscr{X}_i = u_i \circ v_i \circ w_i$, where $\{u_i, v_i, w_i\}_{i=1}^n$ are Gaussian random vectors.

Reduced Symmetric Tensor Recovery Model

For symmetric tensor recovery model

$$y_i = \langle \sum_{k=1}^K \eta_k^* \boldsymbol{\beta}_k^* \circ \boldsymbol{\beta}_k^* \circ \boldsymbol{\beta}_k^*, \boldsymbol{x}_i \circ \boldsymbol{x}_i \circ \boldsymbol{x}_i \rangle + \epsilon_i = \sum_{k=1}^K \eta_k^* \underbrace{(\boldsymbol{x}_i^\top \boldsymbol{\beta}_k^*)^3}_{\text{non-linear}} + \epsilon_i$$

Connect with interaction effect model.

• New Goal: Recover $\{\eta_k^*, \pmb{\beta}_k^*\}_{k=1}^K$

Reduced Non-symmetric Tensor Recovery Model

• For non-symmetric tensor recovery model

$$\begin{aligned} y_i &= & \langle \sum_{k=1}^K \eta_k^* \boldsymbol{\beta}_{1k}^* \circ \boldsymbol{\beta}_{2k}^* \circ \boldsymbol{\beta}_{3k}^*, \boldsymbol{u}_i \circ \boldsymbol{v}_i \circ \boldsymbol{w}_i \rangle + \epsilon_i \\ &= & \sum_{k=1}^K \eta_k^* \underbrace{(\boldsymbol{u}_i^\top \boldsymbol{\beta}_{1k}^*)(\boldsymbol{v}_i^\top \boldsymbol{\beta}_{2k}^*)(\boldsymbol{w}_i^\top \boldsymbol{\beta}_{3k}^*)}_{\text{non-linear}} + \epsilon_i \end{aligned}$$

Connect with compressed image transmission model.

• New Goal: Recover $\{\eta_k^*, \beta_{1k}^*, \beta_{2k}^*, \beta_{3k}^*\}_{k=1}^K$.

Empirical Risk Minimization

Consider Empirical Risk Minimization

$$\widehat{\mathcal{T}} = \underset{\{\eta_k, \boldsymbol{\beta}_k\}}{\operatorname{argmin}} \underbrace{\sum_{i=1}^n (y_i - \sum_{k=1}^K \eta_k (\boldsymbol{x}_i^{\top} \boldsymbol{\beta}_k)^3)^2}_{\mathcal{L}_1(\eta_k, \boldsymbol{\beta}_k)}$$

$$\widehat{\mathcal{T}} = \underset{\{\eta_k, \boldsymbol{\beta}_{ik}\}}{\operatorname{argmin}} \underbrace{\sum_{i=1}^n (y_i - \sum_{k=1}^K \eta_k (\boldsymbol{u}_i^{\top} \boldsymbol{\beta}_{1k}) (\boldsymbol{v}_i^{\top} \boldsymbol{\beta}_{2k}) (\boldsymbol{w}_i^{\top} \boldsymbol{\beta}_{3k})}_{\mathcal{L}_2(\eta_k, \boldsymbol{\beta}_{ik})})^2$$

• Difficulties: *Non-convex optimization!* Non-convexity from cube structure or tri-convexity.

Our Contributions

- Efficient two-stage implementation to non-convex optimization problem.
- 2 Non-asymptotic analysis. Provide optimal estimation rate.

Two-stage Implementation

Main Algorithm (Symmetric Recovery)

• Construct an unbiased empirical moment based tensor $\mathcal{T}_s(y_i,\mathscr{X}_i) \in \mathbb{R}^{p \times p \times p}$ as following

$$\mathcal{T}_s := \underbrace{\frac{1}{6} \Big[\frac{1}{n} \sum_{i=1}^n y_i m{x}_i \circ m{x}_i \circ m{x}_i - m{\mathcal{U}} \Big]}_{ ext{only depends on observations.}}$$

where the bias term

$$\mathcal{U} = \sum_{j=1}^p \left(m_1 \circ e_j \circ e_j + e_j \circ m_1 \circ e_j + e_j \circ e_j \circ m_1 \right)$$
, and $m_1 = \frac{1}{n} \sum_{i=1}^n y_i x_i$. Here $\{e_j\}_{j=1}^p$ are the basis vectors in \mathbb{R}^p .

• Intuition: $\mathbb{E}[\mathcal{T}_s] = \mathscr{T}^*$.

Tensor Denosing Model: $\mathcal{T}_s = \mathscr{T}^* + \mathcal{E}$

- Observation \mathcal{T}_s .
- Noise $\mathcal{E} = \mathcal{T}_s \mathbb{E}(\mathcal{T}_s)$: approximation error.
- Decompose \mathcal{T}_s to obtain $\{\eta_k^{(0)}, \boldsymbol{\beta}_k^{(0)}\}$ through sparse tensor decomposition. See next slide for details.
- Far from the optimal estimation, but good enough as a warm start.

• Intuition: $\mathbb{E}[\mathcal{T}_s] = \mathscr{T}^*$.

Tensor Denosing Model: $\mathcal{T}_s = \mathscr{T}^* + \mathcal{E}$

- Observation \mathcal{T}_s .
- Noise $\mathcal{E} = \mathcal{T}_s \mathbb{E}(\mathcal{T}_s)$: approximation error.
- Decompose \mathcal{T}_s to obtain $\{\eta_k^{(0)}, \beta_k^{(0)}\}$ through sparse tensor decomposition. See next slide for details.
- Far from the optimal estimation, but good enough as a warm start.

• Intuition: $\mathbb{E}[\mathcal{T}_s] = \mathscr{T}^*$.

Tensor Denosing Model: $\mathcal{T}_s = \mathscr{T}^* + \mathcal{E}$

- Observation \mathcal{T}_s .
- Noise $\mathcal{E} = \mathcal{T}_s \mathbb{E}(\mathcal{T}_s)$: approximation error.
- Decompose \mathcal{T}_s to obtain $\{\eta_k^{(0)}, \boldsymbol{\beta}_k^{(0)}\}$ through sparse tensor decomposition. See next slide for details.
- Far from the optimal estimation, but good enough as a warm start.

Initial Step: Sparse Tensor Decomposition

- \Rightarrow Generate L staring points $\{\beta_l^{\text{start}}\}_{l=1}^L$.
 - \Rightarrow For each starting point, compute a non-sparse component of moment-based \mathcal{T}_s via symmetric tensor power update:

$$\widetilde{\beta}_l^{(t+1)} = \frac{\mathcal{T}_s \times_2 \beta_l^{(t)} \times_3 \beta_l^{(t)1}}{\|\mathcal{T}_s \times_2 \beta_l^{(t)} \times_3 \beta_l^{(t)}\|_2},$$

- \Rightarrow Get a sparse solution $\beta_l^{(t+1)}$ via thresholding or truncation.
- $\Rightarrow \text{ Cluster L sets of single component } \{\boldsymbol{\beta}_l^{(T)}, \boldsymbol{\beta}_l^{(T)}, \boldsymbol{\beta}_l^{(T)}\}_{l=1}^L \text{ into } K \text{ clusters to obtain a rank-}K \text{ decomposition } \{\eta_k^{(0)}, \boldsymbol{\beta}_k^{(0)}, \boldsymbol{\beta}_k^{(0)}, \boldsymbol{\beta}_k^{(0)}\}_{k=1}^K.$

Different from matrix SVD due to non-orthogonality.

 $^{^1}$ For $\mathcal{T}_s \in \mathbb{R}^{p imes p imes p}$ and $m{x} \in \mathbb{R}^p$, define $\mathcal{T}_s imes_2 m{x} imes_3 m{x} = \sum_{j,l} m{x}_j m{x}_l [\mathcal{T}_j]_{:,j,l} \ grad 0$

Gradient Update: Thresholded Gradient Decent

- \Rightarrow Input initial estimator $\{\eta_k^{(0)}, \boldsymbol{\beta}_k^{(0)}\}_{k=1}^K$.
 - \Rightarrow In each iteration step, update $\{m{eta}_k\}_{k=1}^K$ as

$$\widetilde{\boldsymbol{\beta}}_{k}^{(t+1)} = \boldsymbol{\beta}_{k}^{(t)} - \frac{\mu_{t}}{\phi} \nabla_{\boldsymbol{\beta}_{k}} \mathcal{L}_{1}(\boldsymbol{\eta}_{k}^{(0)}, \boldsymbol{\beta}_{k}^{(t)})$$

where $\phi = \frac{1}{n} \sum_{i=1}^{n} y_i^2$, μ_t is the step size.

- \Rightarrow Sparsify current update by thresholding $eta_k^{(t+1)} = arphi_{
 ho}(\widetilde{eta}_k^{(t+1)})$.
- \Rightarrow Normalize final update $oldsymbol{eta}_k^{(T)} = rac{oldsymbol{eta}_k^{(T)}}{\|oldsymbol{eta}_k^{(T)}\|_2}$ and update the weight $\widehat{\eta}_k = \eta_k^{(0)} imes \|oldsymbol{eta}_k^{(T)}\|_2^3.$

Non-asymptotic Analysis

Non-asymptotic Upper Bound

Theorem

Suppose some regularity conditions for the true tensor parameter hold. Assume $n \geq C_0 s^{3/2} \log p$ for some large constant C_0 . Denote $Z_k^{(t)} = \sum_{k=1}^K \|\sqrt[3]{\eta_k} \beta_k^{(t)} - \sqrt[3]{\eta_k^*} \beta_k^* \|_2^2$ For any $t=0,1,2,\ldots$, the factor-wise estimator satisfies

$$Z_k^{(t+1)} \leq \underbrace{\kappa^t Z_k^{(t)}}_{\text{computational error}} + \underbrace{\frac{C_1 \eta_{\min}^{*-\frac{1}{3}}}{16} \frac{\sigma^2 s \log p}{n}}_{\text{statistical error}},$$

with high probability, where κ is the contraction parameter between 0 and 1, $\eta_{\min}^* = \min_k \{\eta_k^*\}$, σ is the noise level and C_0, C_1 are some absolute constants.

Remarks

- Interesting characterization for computational error and statistical error;
- Geometric convergence rate to the truth in the noiseless case and minimax optimal statistical rate shown later;
- The error bound is dominated by computation error in the first several iterations and then is dominated by statistical error.
 Useful guideline for choosing stopping rule.
- We conjecture that $n \gtrsim s^{3/2} \log p$ is the minimum requirement of sample complexity in most tensor problems. This has an essential difference with matrix case, where the optimal sample complexity is $\mathcal{O}(s \log p)$.

Remarks

 $\hbox{ When } t \geq T \hbox{ for some enough } T \hbox{, the final estimator is bounded} \\ \hbox{ by }$

$$\left\| \mathscr{T}^{(T)} - \mathscr{T}^* \right\|_F^2 \leq \frac{C \sigma^2 K s \log p}{n},$$

with high probability.

Minimax optimal rate!

Class of Sparse and Low-rank tensor

Sparse CP decomposition

$$\mathscr{T} = \sum_{k=1}^{K} \beta_k \circ \beta_k \circ \beta_k, \|\beta_k\|_0 \le s \text{ for } k \in [K]$$

 Incoherence condition(nearly orthogonal): The true tensor components are incoherent such that

$$\max_{k_i \neq k_j \in [K]} |\langle \boldsymbol{\beta}_{k_i}^*, \boldsymbol{\beta}_{k_j}^* \rangle| \le \frac{C}{\sqrt{s}}.$$

Minimax Lower Bound

Theorem

Consider the class of tensor satisfy sparse CP-decomposition and incoherence condition. Suppose we sample via cubic measurements with i.i.d. standard normal sketches with i.i.d. $N(0,\sigma^2)$ noise, then we have the following lower bound result for recovery loss for this class of low-rank tensors,

$$\inf_{\widehat{\mathcal{T}}} \sup_{\mathcal{T} \in \mathcal{F}} \mathbb{E} \left\| \widehat{\mathcal{T}} - \mathcal{T} \right\|_F^2 \geq c \sigma^2 \frac{K s \log(ep/s)}{n}.$$

Optimal Estimation Rate

Theorem

Consider the class of tensor $\mathcal{F}_{p,K,s}$ satisfy sparse CP-decomposition and incoherence condition. Suppose we observe n samples $\{y_i,\mathscr{X}_i\}_{i=1}^n$ from symmetric tensor cubic sketching model, where $n\geq Cs^{3/2}\log p$ for some large constant C. Then the estimator $\widehat{\mathscr{T}}$ achieves

$$\inf_{\widetilde{\mathscr{T}}} \sup_{\mathscr{T} \in \mathcal{F}_{p,K,s}} \mathbb{E} \left\| \widetilde{\mathscr{T}} - \mathscr{T} \right\|_F^2 \simeq \underbrace{\sigma^2 \frac{K s \log(p/s)}{n}}_{R^*},$$

when $\log p \asymp \log p/s$. Here σ is the noise level.

Remarks

- Our analysis is non-asymptotic and our estimator is rate-optimal.
- In general, we have a trade-off $\to R^*$ is the outcome of statistical error and optimization error trade-off.
- Similar argument holds for non-symmetric case. *Different technical tools are used.*
- To overcome the obstacle from high-order Gaussian random variable, we develop novel high-order concentration inequality by the combination of *truncation argument* and ψ_{α} -norm.

Numerical Study

symmetric tensor, p = 50, K = 3, s = 0.3, replication = 200.

Botao Hao hao22@purdue.edu Department of Statistics Purdue University