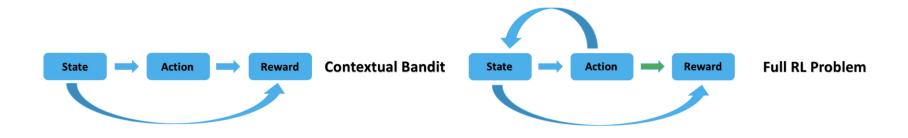
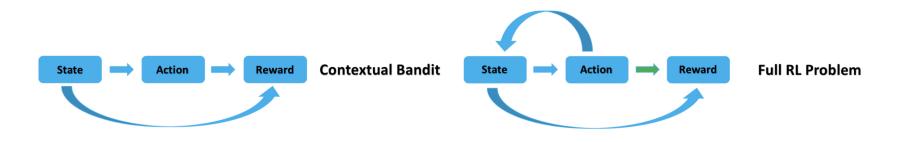
Adaptive Exploration in Linear Contextual Bandits

Botao Hao Joint work with Tor Lattimore (Deepmind) and Csaba Szepesvari (Deepmind)

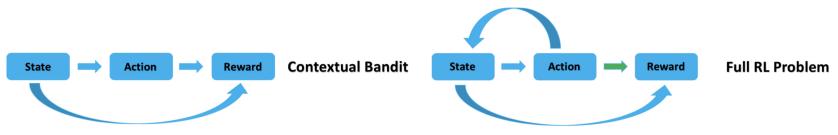
• "Simple" reinforcement learning model.



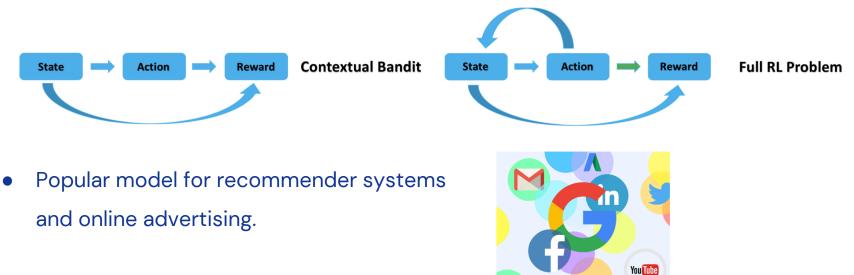
- "Simple" reinforcement learning model.
 - Provide **better principles** to design exploration strategies in RL.



- "Simple" reinforcement learning model.
 - Provide **better principles** to design exploration strategies in RL.
 - Synthetic check for sophisticated methods in RL.



- "Simple" reinforcement learning model.
 - Provide **better principles** to design exploration strategies in RL.
 - Synthetic check for sophisticated methods in RL.



Motivation

- **Optimism principle** (UCB or Thompson sampling) can be arbitrarily bad!
 - Why? Do not exploit the context structure properly.
 - Do not optimize the trade-off between information and regret.

Regret: difference between rewards collected by the optimal policy and proposed policy

Motivation

- **Optimism principle** (UCB or Thompson sampling) can be arbitrarily bad!
 - Why? Do not exploit the context structure properly.
 - Do not optimize the trade-off between information and regret.

Regret: difference between rewards collected by the optimal policy and proposed policy

- Some foundational questions have not been answered yet.
 - How hard is the problem? Dependence of regret on problem structures?
 - Lower bound...

Motivation

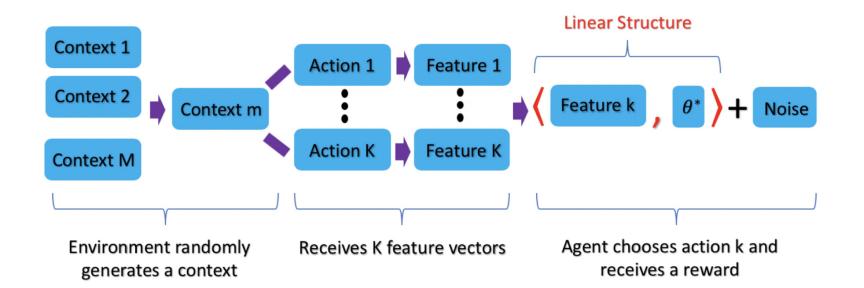
- **Optimism principle** (UCB or Thompson sampling) can be arbitrarily bad!
 - Why? Do not exploit the context structure properly.
 - Do not optimize the trade-off between information and regret.

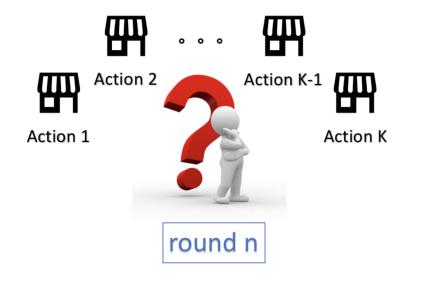
Regret: difference between rewards collected by the optimal policy and proposed policy

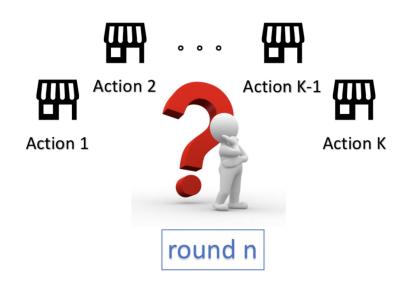
- Some foundational questions have not been answered yet.
 - How hard is the problem? Dependence of regret on problem structures?
 - Lower bound...

Can we design better algorithms for contextual bandits?

Linear Contextual Bandit







Theorem (informal):

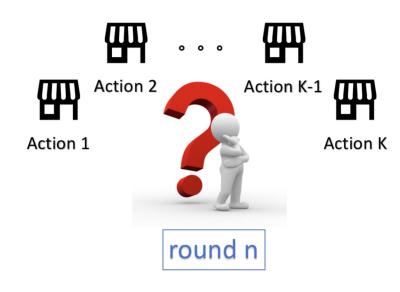
$$\liminf_{n \to \infty} \frac{\text{Regret}}{\log n} \ge C$$

where *C* is optimal value of the following optimization problem,

$$\min_{\alpha} \sum \alpha_x \, \Delta_x$$

subject to $\sqrt{2} \|x\|_{G_{\alpha}^{-1}} \leq \Delta_x$

- Δ_x : sub-optimal gap
- $G_{\alpha} = \sum \alpha_x x x^{\top}$



Theorem (informal):

$$\liminf_{n \to \infty} \frac{\text{Regret}}{\log n} \ge C$$

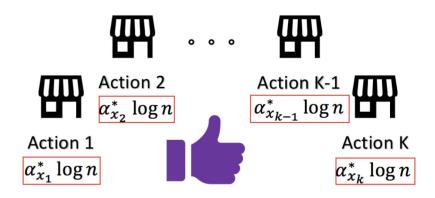
where *C* is optimal value of the following optimization problem,

$$\min_{\alpha} \sum \alpha_x \Delta_x - \text{cumulative regret}$$

subject to $\sqrt{2} \|x\|_{G_{\alpha}^{-1}} \le \Delta_x$

length of confidence interval

- Δ_x : sub-optimal gap
- $G_{\alpha} = \sum \alpha_x x x^{\top}$



Theorem (informal):

$$\liminf_{n \to \infty} \frac{\text{Regret}}{\log n} \ge C$$

where *C* is optimal value of the following optimization problem,

$$\min_{\alpha} \sum \alpha_x \Delta_x - \text{cumulative regret}$$

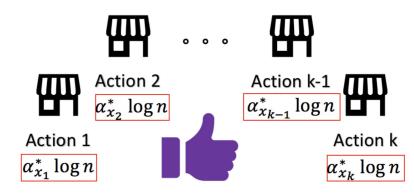
subject to
$$\sqrt{2} \|x\|_{G_{\alpha}^{-1}} \leq \Delta_x$$

length of confidence interval

- Δ_x : sub-optimal gap
- $G_{\alpha} = \sum \alpha_x x x^{\top}$

Remark

- Asymptotical constant C is sharp.
- The allocation rule depends on the problem structure (action set/true parameter).
- When the action set enjoys some good shapes, C could be zero (sub-logarithm regret/bounded regret).
- The lower bound does not depend on the context distribution.



Theorem (informal):

$$\liminf_{n \to \infty} \frac{\text{Regret}}{\log n} \ge C$$

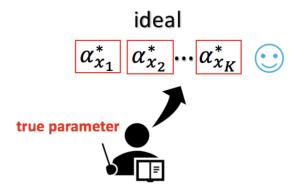
where *C* is optimal value of the following optimization problem,

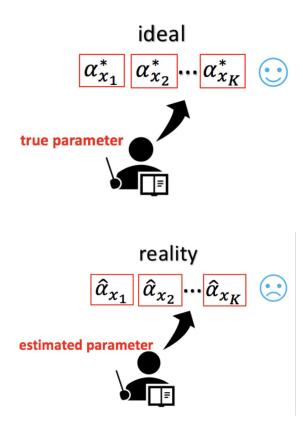
$$\min_{\alpha} \sum \alpha_x \Delta_x - \text{cumulative regret}$$

subject to
$$\sqrt{2} \|x\|_{G_{\alpha}^{-1}} \leq \Delta_x$$

length of confidence interval

- Δ_x : sub-optimal gap
- $G_{\alpha} = \sum \alpha_x x x^{\top}$





$$\begin{array}{l} \underset{\alpha}{\min \sum \alpha_{x} \Delta_{x}} \\ \underset{\alpha}{\min \sum \alpha_{x} \Delta_{x}} \\ \text{subject to } \|x\|_{G_{\alpha}^{-1}} \leq \frac{\Delta_{x}}{\sqrt{2}} \\ \underset{\alpha}{\circ} & \underset{\alpha}{\sim} \\ \underset{\alpha}{\circ} & \underset{\alpha}{\sim} \\ \end{array}$$

- Solve the optimization problem with $\widehat{\Delta}_x$, denote the solution as $\widehat{\alpha}_x$
- ♦ Check if $N_x(t) \ge \hat{\alpha}_x \log t$ for all sub-optimal arms

 $(N_x(t):$ number of pulls for arm x)

- □ if yes, do *exploitation/greedy action*
- □ if not, do *exploration*

Pull arm : $\arg \min_{x} \frac{N_x(t)}{\hat{\alpha}_x}$

• Update $\widehat{\Delta}_x$

Convex Optimization Problem

$$\min_{\alpha} \sum \alpha_x \Delta_x$$
subject to $||x||_{G_{\alpha}^{-1}} \leq \frac{\Delta_x}{\sqrt{2}}$

$$\stackrel{\Delta_x: \text{ sub-optimal gap}}{\cdot G_{\alpha} = \sum \alpha_x x x^{\top}}$$

Matching Upper Bound!

- Solve the optimization problem with $\widehat{\Delta}_x$, denote the solution as $\widehat{\alpha}_x$
- * Check if $N_x(t) \ge \hat{\alpha}_x \log t$ for all sub-optimal arms

 $(N_x(t):$ number of pulls for arm x)

- □ if yes, do *exploitation/greedy action*
- □ if not, do *exploration*

Pull arm :
$$\arg \min_{x} \frac{N_x(t)}{\hat{\alpha}_x}$$

• Update $\widehat{\Delta}_x$

Remark

- If the distribution of contexts is well behaved, our algorithm acts mostly greedily and enjoy sub-logarithmic regret. (adaptive to the good case)
- Asymptotically, the optimal constant is independent of the context distribution. Designing algorithms that optimize for the asymptotic regret may make huge sacrifices in finite-time!

Experiments

$$d = 2$$
 and $k = 3$ and $\mathcal{A} = \{ \bullet, \bullet, \bullet \}$

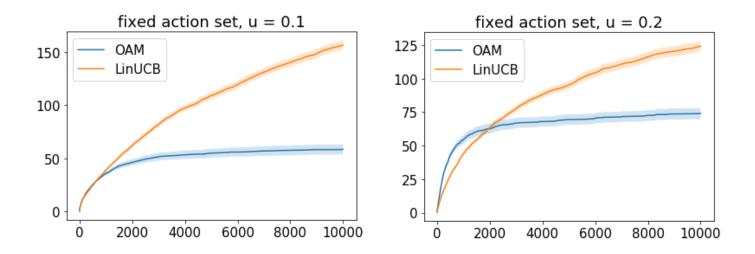
· · ·

$$\theta^* = (1, 0)$$

 $x_1 = (1, 0), x_2 = (0, 1), x_3 = (1 - u, \gamma u)$

 $x_1 =$

Experiments



 $\theta^* = (1,0)$

$$x_1 = (1, 0), x_2 = (0, 1), x_3 = (1 - u, \gamma u)$$

Limitations and Related Work

Current limitations

- Unclear if the algorithm is minimax optimal
- Need to solve an optimization problem each round

Published Work:

- The End of Optimism? An Asymptotic Analysis of Finite-Armed Linear Bandits (Lattimore and Szepesvari, AISTAT 2016)
- Minimal Exploration in Structured Stochastic Bandits (Combes et al., NIPS 2017)
- Exploration in Structured Reinforcement Learning (Ok et al., NIPS 2018)

