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● Popular model for recommender systems 

and online advertising.
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Motivation

Can we design better algorithms for contextual bandits?



Linear Contextual Bandit



Foundational Limit: Sharp Lower Bound 



Foundational Limit: Sharp Lower Bound 

Theorem (informal): 

where C is optimal value of the 
following optimization problem,   



Foundational Limit: Sharp Lower Bound 

Theorem (informal): 

where C is optimal value of the 
following optimization problem,   



Foundational Limit: Sharp Lower Bound 

Theorem (informal): 

where C is optimal value of the 
following optimization problem,   



Remark 

● Asymptotical constant C is sharp.
● The allocation rule depends on the problem structure (action set/true parameter).
● When the action set enjoys some good shapes, C could be zero (sub-logarithm 

regret/bounded regret).
● The lower bound does not depend on the context distribution.



Foundational Limit: Sharp Lower Bound 

Theorem (informal): 

where C is optimal value of the 
following optimization problem,   

“How to translate this resource 
allocation rule to a bandit 
algorithm? ”
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❖ Solve the optimization 
problem with       , denote the 
solution as  

❖ Check if                                   for 
all sub-optimal arms

❏ if yes, do exploitation/greedy 
action

❏ if not, do exploration

Pull arm :

❖ Update         

Algorithm 

(          :number of pulls for arm x)
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Matching Upper Bound!



Remark 

● If the distribution of contexts is well behaved, our algorithm acts mostly greedily 
and enjoy sub-logarithmic regret. (adaptive to the good case)

● Asymptotically, the optimal constant is independent of the context distribution. 
Designing algorithms that optimize for the asymptotic regret may make huge 
sacrifices in finite-time!
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Current limitations

● Unclear if the algorithm is minimax optimal 
● Need to solve an optimization problem each round

Published Work:

● The End of Optimism? An Asymptotic Analysis of Finite-Armed Linear Bandits 
(Lattimore and Szepesvari, AISTAT 2016)

● Minimal Exploration in Structured Stochastic Bandits (Combes et al., NIPS 2017)
● Exploration in Structured Reinforcement Learning (Ok et al., NIPS 2018)

Limitations and Related Work




